
RESEARCH ARTICLES 
 

CURRENT SCIENCE, VOL. 105, NO. 12, 25 DECEMBER 2013 1692 

*For correspondence. (e-mail: agnivsengupta99@gmail.com) 

Uncertainty quantification and reliability 
analysis of CMIP5 projections for the Indian 
summer monsoon  
 
Agniv Sengupta1,* and M. Rajeevan2 
1Department of Civil Engineering, Jadavpur University, Kolkata 700 032, India 
2Ministry of Earth Sciences, Earth System Science Organization, New Delhi 110 003, India  
 

A ‘reliability ensemble averaging (REA)’ technique is 
proposed to provide a quantitative estimate of associ-
ated uncertainty range and reliability of future cli-
mate change projections for Indian summer monsoon 
(June–September), simulated by the state-of-the-art 
Coupled General Circulation Models (CGCMs) under 
Coupled Model Intercomparison Project 5 (CMIP5). 
An evaluation of historical as well as future (RCP4.5 
scenario) simulations of ten CGCMs in the REA tech-
nique projects a mean monsoon warming of 1.215C 
with an associated uncertainty range ( T) of 0.22C, 
and an all-India precipitation increase by 7.109 mm/ 
month with an associated uncertainty ( P) of 
2.592 mm/month for 2021–2050. REA technique also 
reflects a reduction in uncertainty range compared to 
simpler ensemble average approach and is character-
ized by consistently high reliability index in a com-
parative study with individual CGCMs. These results 
suggest the viability of REA methodology in providing 
realistic future Indian monsoon projections by incor-
porating model performance and model convergence 
criteria. 
 
Keywords: Climate change projections, monsoon, reli-
ability analysis, uncertainty range. 
 
THE Indian summer monsoon spread over a span of four 
months (June–September; JJAS), accounting for over 70% 
of the country’s rainfall, is characterized by prominent 
variability in its onset, withdrawal, amount of rainfall and 
occurrences of extreme climatic events like floods and 
droughts. All these consequences have an impact on the 
country’s water resources, agriculture and economy1. 
Temperature is also an important parameter which has an 
impact on agriculture and water resources. Under the in-
creasing greenhouse gases (GHGs) emission scenario, the 
Indian monsoon is susceptible to global warming. With 
increasing anthropogenic activities and industrial revolu-
tion, there is much concern about how increase in GHGs 
may influence the Indian monsoon circulation and rain-
fall. The only way to understand the impact of global 

warming on the Indian monsoon and to assess future 
monsoon climate is to use climate models. This can be 
achieved based on historical simulations and the newly 
developed representative concentration pathways (RCPs) 
under the Coupled Model Intercomparison Project 5 
(CMIP5)2. RCPs represent pathways of radiative forcing 
based on the concept that any single radiative forcing 
pathway can result from a diverse range of socio-
economic and technological development scenarios3. 
 General Circulation Models (GCMs) are one of the pri-
mary tools for deriving projections of future climate 
change. For the Intergovernmental Panel on Climate 
Change (IPCC) Fifth Assessment Report (AR5), which is 
scheduled to be released shortly, the coupled models of 
CMIP5 have been used. To assess the future climate 
change scenarios, it is necessary to understand the 
strength and weakness of the climate models. An analysis 
of CMIP3 and CMIP5 models is thus prepared to under-
stand the capability of climate models in simulating the 
present-day climate1,4. Instead of branding climate mod-
els as ‘bad’ or ‘good’5, climate scientists use simulations 
of a range of coupled models to account for the merits 
and demerits of individual GCMs. Since they are mostly 
qualitative, such projections are characterized by low 
level of confidence and high level of uncertainty6,7. Thus, 
quantification of uncertainty in projection of future cli-
mate scenarios for climate change impact assessment and 
possible mitigation forms a prime research focus. More-
over, decision-makers in a wide variety of organizations 
are increasingly seeking quantitative climate predictions8, 
as the effects of climate change are critical to multiple 
stakeholders, including resource managers and adaptation 
researchers, with a growing and vulnerable population 
along with changes in urbanization and land use9. 
 In this article, we employ a quantitative procedure 
based on the model performance and model convergence 
criteria, known as ‘reliability ensemble averaging’ (REA)10. 
This method is used for the determination of uncertainty 
range and reliability of climate change projections of ten 
different CMIP5 GCMs for two main variables, surface 
temperature and precipitation. Throughout this article the 
term ‘ensemble’ refers to simulations of different individual 
GCMs and not to different realizations within the same 
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model. Here, we analyse climate projections for all the 
GCMs under the RCP4.5 scenario. The first criterion in 
the REA method, namely ‘model performance’, is based 
on the ability of GCMs to replicate the present-day cli-
mate. Thus, the better the model performance in this  
regard, the higher is the reliability of that climate change 
simulation. The second criterion, namely ‘model conver-
gence’, is defined as deviation of the individual projec-
tion of change with respect to the central tendency of the 
ensemble. Thus, a larger weightage is assigned to the 
GCMs with small bias and whose projections agree with 
the consensus, while GCMs with lesser skill in reproduc-
ing the observed climatology and with inferior skills with 
respect to majority of the ensemble members receive less 
weight. The REA method is also advantageous as it does 
not involve prior assumptions regarding the shape of 
probability distribution functions (for example, Jones11  
assumes uniform PDFs for both regional and global tem-
perature changes in a study for the south Australian  
region) for major uncertainty factors like climate sensiti-
vity, radiative forcing, etc. Moreover, the REA metho-
dology has been highly acclaimed in the study by Tebaldi 
et al.12 as a formal statistical model which justifies itself 
as an optimal procedure. 

Data and methodology 

Rainfall and temperature are the two variables for which 
detailed observations exist, which have been extensively 
studied in the context of Indian monsoon9. The present 
study analyses historical simulations as well as future 
projections of ten selected GCMs under the RCP4.5 sce-
nario. The RCP4.5 scenario represents a stabilization 
scenario where total radiative forcing is stabilized before 
2100 by employing a range of technologies and strategies 
for reducing GHG emissions. The model data are taken 
from CMIP5 for which the variables surface temperature 
and precipitation are readily available. The selected cou-
pled GCMs are listed in Table 1. Model details and data 
are available from the Earth System Grid Federation 
(ESGF) portal of the Program for Climate Model Diagno-
sis and Intercomparison (PCMDI) website maintained by 
the Lawrence Livermore National Laboratory, USA. The 
historical and future projections for Indian summer mon-
soon (June–September) are considered over the Indian 
land mass, by masking out the oceans and territories out-
side the geographical borders of India. For validating the 
model simulations for precipitation, we have used the 
Global Precipitation Climatology Project (GPCP) rainfall 
data (available from 1979 to 2005)13. The GPCP project 
was initiated under WCRP to evaluate and provide global 
gridded datasets of monthly precipitation, based on all 
suitable observational techniques1. In order to evaluate 
surface temperature simulations of the CGCMs, we have 
used all-India regionally averaged surface temperature 

data from 1971 to 2000, available from the Indian Insti-
tute of Tropical Meteorology (IITM, Pune, http://www. 
tropmet.res.in). 
 For the quantification of model uncertainty, we consi-
dered the model-simulated changes in mean surface tem-
perature and precipitation for the period 2021–2050 
(under the RCP4.5 scenario) compared to the recent-past 
climate for Indian summer monsoon (June–September). 
For comparison of our results from our suggested REA 
method, we first use a simpler averaging procedure for de-
velopment of climate change estimates and associated un-
certainty range10. For introducing this approach, we take 
surface temperature T as an example. The estimated change 
is given by the average of all model simulations, that is 
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where R is the total number of GCMs, the bar indicates 
the averaging procedure and  indicates the model-
simulated change. 
 In its generalized form, the uncertainty is measured by 
the corresponding root-mean-square difference (rmsd), or 
, defined by 
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The uncertainty range is then given by  T and is cen-
tred around T . Thus, from a probabilistic point of view, 
if the changes followed a Gaussian probability distribu-
tion function, the rmsd would be equivalent to the stan-
dard deviation and  T would approximately cover the 
68.3% confidence interval. However, this direct model 
averaging procedure undermines the model reliability cri-
teria and weighs all the ten GCM simulations equally. 

Reliability ensemble averaging methodology 

The REA is a method for uncertainty quantification 
through a weighted average of individual GCM simula-
tions quantified by two major criteria, namely model bias 
and model convergence, proposed by Giorgi and Mearns10. 
In the present study, the two variables surface tempera-
ture and precipitation for all-India monsoon rainfall are 
considered to determine the fidelity of the ten selected 
CMIP5 GCMs in projecting future climate change through 
a quantitative assessment of the uncertainty associated 
with future climate model projections. Stepwise pro-
cedure for REA analysis, considering JJAS precipitation 
as the sample parameter, is as follows. 
 Step 1: The REA simulated precipitation change  
( )P  is given by the weighted average of the individual 

GCMs. 
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Table 1. List of CMIP5 GCMs used in this study with their modelling organization, spatial resolution and model designation 

Modelling organization GCM Spatial resolution Model designation 
 

National Center for Atmospheric Research (USA) CCSM4 0.942  1.25 NCAR 
Canadian Centre for Climate Modelling and Analysis (Canada) CanESM2 2.79  2.8125 CCCMA 
Centre National de Recherches Meteorologiques/Centre Europeen de CNRM-CM5 1.4008  1.4063 CNRM 
 Recherche et Formation Avancees en Calcul Scientifique (France) 
NOAA Geophysical Fluid Dynamics Laboratory (USA) GFDL-CM3 2  2.5 GFDL 
Max Planck Institute for Meteorology (Germany) MPI ESM-LR 1.865  1.875 MPI 
Institut Pierre-Simon Laplace (France) IPSL-CM5A-MR 1.268  2.5 IPSL 
Hadley Centre for Climate Prediction and Research/ HadGEM2-AO 1.25  1.875 HadGEM2 
 Meteorological Office (UK) 
LASG, Institute of Atmospheric Physics, Chinese Academy of FGOALS-G2 2.79  2.8125 LASG 
 Sciences (China) 
Atmosphere and Ocean Research Institute (The University of Tokyo), MIROC5 1.4  1.406 MIROC5 
 National Institute for Environmental Studies, and Japan Agency for  
 Marine-Earth Science and Technology (Japan) 
Norwegian Climate Centre (Norway) NorESM 1-M 1.895  2.5 NorESM 
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where the operator A  denotes REA averaging and Ri  
denotes the individual GCM reliability factor. 
 Step 2: The GCM overall reliability factor Ri is defined 
as 
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Here, model reliability factor RB,i is a function of the 
model bias (BP,i) in simulating precipitation of the recent 
past, and bias is defined as the difference between the 
GCM simulated and observed GPCP mean JJAS precipi-
tation for the recent past (1979–2005). Again, RD,i is a 
factor that measures the GCM reliability in terms of the 
distance (DP,i) of the change calculated by a given model 
from the REA average change, and therefore, the distance 
is a measure of the degree of convergence of a given 
model with the others. In other words, RB,i is a measure of 
the model performance criterion, while RD,i is a measure 
of the model convergence criterion, which are by far the 
governing criteria for the REA method. 
 Step 3: An iterative procedure is then used to calculate 
distance parameter DP,i, starting with an initial guess 
value as the distance of each Pi from the ensemble aver-
age change ,P as in eq. (1), i.e. [DP,i]1 = [Pi – ].P  
The first guess value is then used in eqs (3) and (4) to ob-
tain a first-order REA average change 1[ ] ,P   which is 

then used to recalculate the distance of each individual 
model as [DP,i]2 = 1[ [ ] ]iP P     and the iteration is con-
tinued henceforth. Typically, this procedure converges 
quickly after several iterations. 
 Step 4: According to the REA method, the parameters 
m and n used in eq. (4) to weigh each criterion are as-
sumed to be equal to 1, which gives equal weightage to 
both criteria. Also, RB and RD are set to 1 when B and D 
are smaller than  respectively. Thus, eq. (4) states that a 
GCM projection is ‘reliable’ when both its bias and  
distance from the ensemble average are within the natural 
variability, so that RB = RD = R = 1. Besides, as the bias 
and/or distance grows, the reliability of a given GCM 
simulation decreases. 
 Step 5: The parameter  used in eq. (4) is a measure of 
natural variability in 30-year average JJAS regional tempe-
rature and precipitation according to the REA method. In 
order to calculate , we compute the time series of  
observed, regionally averaged temperature and precipitation 
for JJAS monsoon from IITM data for 1901–2005. Then, 
30-year moving averages of the series are calculated, and  
is estimated as the difference between the maximum and 
minimum values of these 30-year moving averages. 
 Step 6: In order to calculate the uncertainty range 
around the REA average change, the REA rmsd of the 
changes, P  is to be obtained, defined by 
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The upper and lower uncertainty limits are defined as 
 
  ,PP P      (6) 
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and the total uncertainty range is given by P P     
2 .P  Now, according to the REA method, when the 

changes are distributed following a Gaussian PDF,  
the rmsd is equivalent to the standard deviation, so that 
the   range would imply a 68.3% confidence interval. 
For a uniform PDF, that is, one in which each change has 
the same probability of occurrence, the   range implies 
a confidence interval of about 58%. Moreover, in the 
REA method, the normalized reliability factors of eq. (4) 
are interpreted as the likelihood of a GCM outcome, that 
is, greater the factor, greater will be the likelihood asso-
ciated with the model simulation. 
 Step 7: Finally, a quantitative measure of the collective 
reliability of the ten selected GCMs ( )  in simulating  
future climate changes is obtained by applying the REA 
averaging operator to the reliability factor, that is 
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In other words, the collective reliability is given by the 
REA average of the individual GCM reliability factors. 
 This definition of reliability is thus consistent with the 
fact that different model simulations are weighted differ-
ently in the calculation of the REA average. The REA 
method also incorporates a quantitative measure of the 
collective reliability of the GCMs with respect to model 
bias and model convergence criteria separately as follows 
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Results 

GCM historical simulations for the mean Indian  
recent past summer monsoon 

As a precursor of our uncertainty quantification and reli-
ability analysis, the need of inclusion of model perform-
ance criterion in evaluation of GCM projections is 
examined. Figure 1 a and b shows the observed mean spa-
tial pattern of temperature and rainfall respectively, for 
the monsoon season (June–September). The spatial dis-
tribution plots for monsoon temperatures (C) averaged 
for the period 1971–2000, based on historical simulations 
of the ten CMIP5 GCMs, are shown in Figures 2 a–j, 
while Figure 3 a–j shows the spatial mean monsoon sea-
sonal rainfall (in mm/month) pattern for the period 1979–
2005. These spatial plots are shown as illustrations in 
simulating Indian summer monsoon climatology. How-

ever, we are only concerned with obtaining individual 
GCM bias (difference between the spatially averaged 
model simulated and observed monsoon climatology for 
all-India monsoon rainfall) which will act as our input pa-
rameters in the REA methodology. The spatially distrib-
uted biases between simulated and observed rainfall have 
already been discussed in the earlier studies for the Indian 
monsoon1,3. We find here that the models simulate the 
spatial pattern of observed temperatures fairly well, 
marked by temperature maximum over parts of Thar  
Desert, Rajasthan and minimum over the Himalayan re-
gion. On the other hand, all the models simulate the rain-
fall maximum over the Bay of Bengal. However, other 
details vary from model to model. At least five of the 
models in this study (NCAR, MPI, LASG, MIROC5, 
NorESM) capture the observed (GPCP) rainfall maxi-
mum over the west coast of India reasonably well, and all 
the GCMs simulate scanty rainfall over northwest India. 
Models like CCCMA, IPSL, CNRM, HadGEM2 and 
LASG severely underestimate observed rainfall, whereas 
NCAR, MIROC5 and NorESM provide an overestimated 
monsoon rainfall simulation. We notice that the biases of 
GCMs are far more pronounced in case of precipitation, 
with widespread positive and negative biases (Table 2). 
In case of surface temperature, biases range from –3.94C 
to 0.62C when compared with the observed (IITrop-Met) 
regionally averaged temperature. Thus, widely variable 
bias exists in simulating present-day observed Indian 
summer monsoon climatology, as reflected in Table 2. 
This substantiates our claim to incorporate model  
performance criterion and proves the fact that a simple 
multi-model average may not be appropriate in the 
evaluation of future GCM climate change projections. 

Projected temperature change for 2021–2050 All 
India Monsoon Rainfall (AIMR) and estimates of  
uncertainty range 

Figure 4 shows the mean JJAS temperature change (C) 
projected by the ten CMIP5 GCMs during 2021–2050 
under the RCP4.5 scenario relative to the 1971–2000 base 
period. The REA and ensemble average-based tempera-
ture changes with corresponding upper and lower uncer-
tainty limits are also shown in Figure 4. The all-India 
mean monsoon temperature increases by 0.95–1.91C  
according to the CMIP5 GCM simulations (Table 3) rela-
tive to the 1971–2000 historical simulations, while the 
REA and ensemble average warming are 1.215C and 
1.297C respectively. The JJAS natural variability (T) in 
observed all-India temperature is computed as 0.11C, 
while the GCM-projected and REA-based temperature 
increases are well above this natural variability estimate. 
The uncertainty range defined by the rmsd ( T), is 
0.366C for the ensemble average, while the use of REA 
methodology reduces the overall model uncertainty range
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Figure 1. a, Mean spatial pattern of observed temperature (C) based on HadCRU data (obtained from 
http://www.cru.uea.ac.uk/cru/data/temperature) for the JJAS season. b, Observed mean monsoon spatial rainfall 
(mm/month) pattern for the period 1979–2005 based on GPCP data. 

 
 

 
 

Figure 2 a–j. The spatial pattern of June–September mean surface temperature (C) simulated by the ten CMIP5 GCMs for the period 1971–2000. 
 
 
(as shown by the blue and green bold lines in Figure 4), 
since T in this case is of the order of 0.22C. This  
improvement in terms of uncertainty range results due to 
filtering out of highly biased model outliers by assigning 
proper weightage as stated in the REA methodology. 
Thus, under the assumption of a Gaussian PDF of the 

temperature changes, the REA-projected JJAS warming 
of 0.995–1.435C (eqs (6) and (7)) with a mean value of 
1.215C and standard deviation of 0.22C would cover a 
68.3% confidence interval. 
 The spatial pattern of mean monsoon warming for the 
June–September period, projected by the ten CMIP5
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Figure 3 a–j. The spatial distribution of Indian summer monsoon seasonal (JJAS) precipitation (mm/month) as simulated by the ten CMIP5 
GCMs for the period 1979–2005. 
 
 

Table 2. List of CMIP5 GCMs with corresponding biases in simulating Indian summer monsoon mean  
 observed surface temperature and precipitation climatology 

 Model bias in simulating Model bias in simulating  
CMIP5 GCM temperature (C) precipitation (in mm/month) 
 

NCAR CCSM4 –2.44 56.377 
CCCMA CanESM2 0.62 –71.8 
CNRM-CM5 –3.83 –33.14 
NOAA GFDL-CM3 –3.94 0.8 
MPI ESM-LR –1.77 –17.88 
IPSL-CM5A-MR –1.11 –68.47 
UKMO HadGEM2-AO 0.55 –45.78 
LASG FGOALS-G2 –0.53 –32.62 
MIROC5 –1.9 75.12 
NorESM 1-M –1.07 31.15 

 
 
GCMs, are illustrated in Figure 5 a–j. The most signifi-
cant aspect is the greater warming scenario projected over 
northern India compared to the rest of the country, espe-
cially for Jammu and Kashmir, and the Himalayan region, 
by the NCAR, CNRM, MPI, LASG, MIROC5 and 
NorESM models. On the other hand, CCCMA, GFDL, 
IPSL and HadGEM2 project a temperature increase of the 
order of 1.4–2C over the eastern coast of India. 

Projected precipitation change for 2021–2050  
AIMR and estimates of uncertainty range 

Figure 6 shows the mean JJAS precipitation increase 
(mm/month) projected by the ten CMIP5 GCMs during 
2021–2050 under the RCP4.5 scenario relative to the 
1979–2005 base period, along with REA and ensemble 
average-based change with corresponding upper and 
lower uncertainty limits. The change in the all-India 
mean monsoon precipitation varies from –0.59 to 
17.39 mm/month according to CMIP5 GCM simulations 

(Table 3) relative to the 1979–2005 historical simula-
tions. The REA and the ensemble-averaged projected  
future JJAS precipitation increase are 7.109 and 
7.184 mm/month respectively. The precipitation increases 
differ by the order of a few tenths of a millimetre. The 
REA projected change can be interpreted as a 3.46% all-
India precipitation increase from the observed (IITrop-
Met) 1979–2005 Indian regionally averaged summer 
monsoon precipitation. The JJAS natural variability (P) 
in observed rainfall is 4.667 mm/month, and GCM pro-
jections whose bias and convergence parameters lie 
within this natural variability range are considered as 
highly reliable. The uncertainty range estimates based on 
rmsd ( P) are large for ensemble average ( P is 
4.729 mm/month), as shown by the black dotted lines in 
Figure 6. This uncertainty range is reduced while using 
the REA method ( P  in this case is 2.592 mm/month) 
due to filtering out of highly biased model outliers. Thus, 
assuming a Gaussian PDF of the precipitation changes, 
the REA-projected JJAS precipitation increase of 4.517–
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Figure 4. Change (C) in June–September mean temperature as projected by the GCMs, with REA and 
ensemble average-based warming estimate and corresponding upper and lower uncertainty limits. 

 
 

 
 

Figure 5 a–j. Spatial distribution of the change in average surface temperature during June–September as projected by the ten CMIP5 GCMs for 
the period 2021–2050 relative to the base period (1971–2000). 
 
 
Table 3. List of CMIP5 GCMs with projected changes in JJAS mean 
surface temperature (C) and precipitation (mm/month) for 2021–2050 
(under the RCP4.5 scenario) relative to recent-past simulations* of the  
 models for all-India monsoon rainfall 

CMIP5 GCM T (C) P (mm/month) 
 

NCAR CCSM4 0.95 17.39 
CCCMA CanESM2 1.87 –0.59 
CNRM-CM5 0.93 4.89 
NOAA GFDL-CM3 1.69 7.61 
MPI ESM-LR 1.26 8.89 
IPSL-CM5A-MR 1.91 7.51 
UKMO HadGEM2-AO 1.26 7.23 
LASG FGOALS-G2 1.12 4.01 
MIROC5 0.97 11.94 
NorESM 1-M 1.01 2.96 

*All the projected changes are for JJAS average of 2021–2050 relative 
to 1971–2000 in case of surface temperature, and relative to 1979–2005 
in case of precipitation. 

9.701 mm/month, with a mean of 7.109 mm/month and 
standard deviation of 2.592 mm/month would signify a 
68.3% confidence interval. All these results are testimony 
to an intensification of summer monsoon precipitation 
over India. 
 Figure 7 a–j illustrates the spatial distribution plots for 
CMIP5 GCM projected JJAS precipitation change for 
2021–2050 relative to the base period simulations. Wide 
regional variation exists in model projections for rainfall 
as is evident from the spatial patterns of this figure. Pre-
cipitation is likely to increase all over India, except for a 
few regions, as was also noticed by Chaturvedi et al.3 for 
these short-term projections. In the CCCMA, IPSL, 
MIROC5 and NorESM models, there is marked decrease 
of JJAS precipitation up to –10 mm/month over parts of 
Bengal, Odisha, stretches of the eastern coast and over 
certain parts of Central India. On the other hand, the
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Figure 6. Projections of Indian summer monsoon precipitation change (mm/month) by the GCMs, with 
REA and ensemble average-based increase in rainfall estimate and corresponding upper and lower uncer-
tainty limits. 

 
 

 
 

Figure 7 a–j.  Spatial distribution of the change in summer monsoon precipitation as projected by the ten CMIP5 GCMs for the period 2021–2050 
relative to the base period (1979–2005). 
 
 
existing rainfall maximum trend over the west coast of the 
country is likely to intensify as predicted by most of the 
models, especially NCAR, GFDL, IPSL, HadGEM2 and 
LASG. Moreover, at least five of the GCMs (NCAR, IPSL, 
HadGEM2, LASG and NorESM) project a decreasing mon-
soon over Jammu and Kashmir. 
 However, instead of merely relying on this qualitative 
study, the fidelity of these regional climate change  
projections has been assessed in the next section to aid 
model selection strategies. 

Reliability analysis of CMIP5 GCMs for surface  
temperature and precipitation projections 

The performances of all the ten GCMs and the proposed 
REA methodology in terms of reliability metrics, namely 

model bias reliability factor (RB,i), model convergence  
reliability factor (RD,i) and collective model reliability  
factor (Ri), are presented in Tables 4 and 5 for surface 
temperature and precipitation respectively. The ranks ob-
tained for these three criteria illustrate that with an excep-
tion of model bias reliability parameter for temperature, 
the REA technique consistently ranks within the top three 
(ranked two and three for precipitation and surface tem-
perature variables respectively). The two GCMs which per-
form better than REA for temperature are LASG and 
HadGEM2; however, the poor performance of these mod-
els in case of precipitation projections is also noteworthy. 
GFDL-CM3, with the least bias (0.8 mm/month) in simu-
lating present-day observed precipitation, ranks first 
among the GCMs for rainfall projections; however it fails 
in modelling surface temperature simulations properly.
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Table 4. Performance evaluation and ranking of CMIP5 GCM in terms of model bias reliability factor, model convergence reliability factor and  
 overall collective model reliability for temperature 

 Reliability factor  Reliability factor  Overall collective 
GCM for model bias (RB,i) Rank for model convergence (RD,i) Rank model reliability (Ri) Overall rank 
 

NCAR 0.045082 9 0.41556479 5 0.018734478 8 
CCCMA 0.177419 3 0.167862048 8 0.029781976 6 
CNRM 0.028721 10 0.386371619 6 0.011096835 10 
GFDL 0.027919 11 0.231432779 7 0.006461321 11 
MPI 0.062147 7 1 1 0.062146893 4 
IPSL 0.099099 6 0.158205091 9 0.015677982 9 
HadGEM2 0.2 2 1 1 0.2 2 
LASG 0.207547 1 1 1 0.20754717 1 
MIROC5 0.057895 8 0.449530037 4 0.026025423 7 
NorESM 0.102804 4 0.537371764 2 0.055243826 5 
REA 0.10086 5 0.535 3 0.1459 3 

 
 
Table 5. Performance evaluation and ranking of CMIP5 GCM in terms of model bias reliability factor, model convergence reliability  
 factor and overall collective model reliability for precipitation 

 Reliability factor  Reliability factor  Overall collective 
GCM for model bias (RB,i) Rank for model convergence (RD,i) Rank model reliability (Ri) Overall rank 
 

NCAR 0.082781986 8 0.453970663 5 0.037580593 11 
CCCMA 0.065 10 0.606135384 4 0.0393988 10 
CNRM 0.140826795 6 1 1 0.140826795 6 
GFDL 1 1 1 1 1 1 
MPI 0.261017897 2 1 1 0.261017897 3 
IPSL 0.068161238 9 1 1 0.068161238 8 
HadGEM2 0.10194408 7 1 1 0.10194408 7 
LASG 0.143071735 5 1 1 0.143071735 5 
MIROC5 0.062127263 11 0.966172574 2 0.060025658 9 
NorESM 0.149823435 4 1 1 0.149823435 4 
REA 0.207475 3 0.90263 3 0.57571 2 
 
 
These results suggest the effectiveness and viability of 
the REA approach in judiciously combining multiple 
coupled model projections in obtaining future climate 
change estimates of the Indian monsoon. 
 The individual GCM-projected change and the corre-
sponding GCM bias as a function of their reliability  
factor are plotted in Figures 8 and 9 for temperature and 
precipitation respectively. Note that LASG with a bias of 
only –0.53C and GFDL with a bias of just 0.8 mm/month 
in simulating observed temperature and rainfall climato-
logy respectively, attain the greatest reliability in the  
figures. Also, the consistently high reliability estimate of 
the REA technique in both cases is worth mentioning. 
The most noticeable aspect is, however, the progressively 
increasing model reliability with decreasing model bias, 
implying more likely future projections of the monsoon 
climate. However, there also exist cases (CCCMA in Fig-
ure 8) where in spite of having lower model bias 
(0.62C), the models get lesser overall reliability due to 
poor model convergence criterion (RD = 0.168). 
 Figures 10 and 11 show the overall reliability factor 
(R) along with the model reliability factors for model bias 
(RB) and model convergence criteria (RD) in case of the 
ten GCMs and the REA methodology for surface tem-

perature and precipitation respectively. For temperature, 
the values of RD are mostly in the range 0.4–1.0, with 
models like MPI, HadGEM2 and LASG having a model 
convergence reliability factor of 1.0 (Figure 10). For pre-
cipitation, model convergence criterion shows significant 
improvement, with seven GCMs attaining a RD value of 
1.0 (Figure 11), signifying the fact that the deviation of 
these individual GCM-projected changes from the REA-
projected changes is within the natural variability esti-
mate and hence ‘highly reliable’. The values of RB are 
generally lower, in the range 0.03–0.21 for temperature, 
and mostly 0.1–0.26 for precipitation. However, GFDL 
showing minimum bias in reproducing present-day mon-
soon precipitation with its deviation within the natural 
variability of the observed JJAS precipitation is attributed 
the highest model bias reliability factor of 1.0. The con-
sistently greater RD value compared to the RB factor, por-
trayed in the figures, indicates that the convergence of 
GCMs in future monsoon climatology projections is more 
than the ability of the GCMs to reproduce the recent past 
climate. Also, the values of the individual GCM reliabi-
lity factor (Ri) and the REA-based collective reliability 
factor ( )p  lie within their corresponding RB and RD val-
ues, ranging from 0.01 to 0.21 for surface temperature,
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Figure 8. Change in June–September mean temperature (red circles) and corresponding bias (blue 
squares) as a function of reliability factor for different GCMs. Also shown is the REA simulated change. 
The dashed line represents the zero level. 

 
 
 

 
 

Figure 9. Change in June–September mean precipitation (red circles) and corresponding bias (blue 
squares) as a function of reliability factor for different GCMs. Also shown is the REA simulated change. 
The dashed line represents the zero level. 

 
 
 
and from 0.04 to 1.0 for precipitation. This proves the 
fact that in spite of having higher model convergence re-
liability, the decrease in the overall reliability of the 
GCMs is due to their poor performance in reproducing 
recent past observed JJAS summer monsoon climatology 
due to existence of significant biases. Also, it is important 
to point out the effect of the natural variability estimate on 
the overall reliability of a model. Since the estimated 
natural variability in surface temperature is very small 
(0.11C), the reliability factor also reduces. However, the 
use of REA metric maximizes the chances of obtaining a 
likely future climate change estimate of the Indian mon-
soon by minimizing the contribution of poorly perform-
ing models and by extracting the most reliable  
information from each model. 

Discussions and conclusions 

With climate change posing the biggest threat to our 
planet, quantitative assessment and possible reduction of 
the contribution of uncertainty in future climate predic-
tions remains a potential research area. Thus, in the pre-
sent study, we consider ten CMIP5 GCMs and introduce 
REA method for quantification of uncertainty and reli-
ability associated with climate model projections of JJAS 
Indian summer monsoon climate. This exercise is needed 
as the consideration of model uncertainty by combination 
of model outputs provides confidence to decision-makers 
in formulating policies for climate change impact assess-
ment14. Our results provide precipitation and surface 
temperature projections of the Indian summer monsoon
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Figure 10. Overall GCM reliability, Ri (black circles), GCM performance reliability factor, RB (red circles) and 
GCM convergence reliability factor, RD (blue squares) for temperature projections of the Indian summer mon-
soon. 

 
 

 
 

Figure 11. Overall GCM reliability, Ri (black circles), GCM performance reliability factor, RB (red circles) and 
GCM convergence reliability factor, RD (blue squares) for precipitation projections of the Indian summer mon-
soon. 

 
 
for 2021–2050 for the individual GCMs and also using 
the REA technique. The following conclusions are drawn 
from this study. 
 (1) The use of REA technique, accounting for model 
performance and model convergence parameters, is 
highly beneficial with significant uncertainty reduction 
and high reliability index (ranking three and two for tem-
perature and precipitation projections respectively) asso-
ciated with climate predictions. 
 (2) The uncertainty range computed quantitatively  
using REA technique (0.22C and 2.592 mm/month) is 
lower than that determined by the rmsd in an ensemble 
average approach. This uncertainty reduction suggests 
that REA is a viable technique for determining future  

Indian monsoon forecasts, by minimizing the contribution 
of poorly performing models or outliers. 
 (3) The comparative study of the individual GCMs 
with CMIP5 simulations and our proposed REA method-
ology for quantitative estimates of the reliability of  
climate model projections highlight that REA, with con-
sistently high reliability values (overall reliability 0.146 
and 0.576 for temperature and precipitation projections 
respectively), is a highly effective approach in determin-
ing long-term simulations of the Indian monsoon rainfall 
by combining multiple GCM outputs and assigning  
adequate weightage parameters. 
 (4) The performance of GCMs in simulating recent 
past Indian monsoon climatology is far inferior to the 
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convergence of GCMs in simulating projected monsoon 
changes, as is evident from the substantially lower RB 
values compared with their RD values. Thus, the prime 
requirement for improvement in reliability of GCM-
simulated changes is the reduction of significant biases 
that exist in reproducing recent past monsoon climate. 
 (5) This study will aid policy-makers of India in  
assessment of future climate change impacts on water  
resources, agriculture, economy, etc. which depend upon 
all-India monsoon rainfall, by providing a reliable com-
bination of CMIP5 outputs. 
 
 

1. Rajeevan, M. and Nanjundiah, R. S., Coupled model simulations 
of twentieth century climate of the Indian summer monsoon. In 
Current Trends in Science, Platinum Jubilee Special Volume of 
the Indian Academy of Sciences, Bangalore, 2009, pp. 537–567. 

2. Taylor, K. et al., An overview of CMIP5 and the experiment  
design. Bull. Am. Meteorol. Soc., 2012, 93, 485–498. 

3. Chaturvedi, R. K., Joshi, J., Jayaraman, M., Bala, G and Ravin-
dranath, N., Multi-model climate change projections for India un-
der representative concentration pathways. Curr. Sci., 2012, 
103(7), 791–802. 

4. Sperber, K. R. et al., The Asian summer monsoon: an intercom-
parison of CMIP5 vs CMIP3 simulations of the late 20th century. 
Climate Dyn., 2012; doi: 10.1007/s00382-012-1607-6. 

5. Knutti, R., Should we believe model predictions of future climate 
change? Philos. Trans. R. Soc., London Ser. A, 2008, 366, 4647–
4664. 

6. Visser, H. et al., Identifying key sources of uncertainty in climate 
change projections. Climatic Change, 2000, 45, 421–457. 

7. Giorgi, F. and Francisco, R., Evaluating uncertainties in the  
prediction of regional climate change. Geophys. Res. Lett., 2000, 
27, 1295–1298. 

8. Hawkins, E. and Sutton, R., The potential to narrow uncertainty in 
regional climate predictions. Bull. Am. Meteorol. Soc., 2009, 90, 
1095–1107. 

9. Kodra, E., Ghosh, S. and Ganguly, A., Evaluation of global  
climate models for Indian monsoon climatology. Environ. Res. 
Lett., 2012, 7, 014012. 

10. Giorgi, F. and Mearns, L. O., Calculation of average, uncertainty 
range, and reliability of regional climate changes from AOGCM 
simulations via the ‘reliability ensemble averaging’ (REA) 
method. J. Climate, 2002, 15(10), 1141–1158. 

11. Jones, R. N., Managing uncertainty in climate change projec-
tions – issues for impact assessment. Climate Change, 2000, 45, 
403–419. 

12. Tebaldi, C., Smith, R. L., Nychka, D. and Mearns, L. O., Quanti-
fying uncertainty in projection of regional climate change: a 
Bayesian approach to the analysis of multimodel ensembles.  
J. Climate, 2005, 8, 1524–1540. 

13. Adler, R. F. et al., The Version-2 Global Precipitation Climatol-
ogy Project (GPCP) monthly precipitation analysis (1979–
present). J. Hydrometeorol., 2003, 4, 1147–1167. 

14. Knutti, R., The end of model democracy? Climatic Change, 2010, 
102, 395–404. 

 
 
 
ACKNOWLEDGEMENTS. A.S. thanks IASc, INSA and NASI for 
support in the form of Summer Research Fellowship. We thank the 
WCRP’s Working Group on Coupled Modelling (WGCM) and the 
CMIP5 modelling organizations mentioned in Table 1 in making avail-
able their GCM outputs. 
 
 
Competing Financial Interests: The authors declare no competing  
financial interests. 
 
Received 15 July 2013; revised accepted 9 October 2013 

 

 
 
 


